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It is shown that the method known as the unsubtracted bootstrap, by which one calculates the mass and
residue of a self-consistent bound state of strongly interacting particles in the N/D formalism, may be
identified with the requirements that the strong-vertex (Z,) and wave-function (Z;) renormalization con-
stants of the composite vanish simultaneously. The unsubtracted bootstrap is also shown to be equivalent
to the self-consistent bound-state model of Liu by identifying the first vertex equation of that model with
Z,=0, and by reducing the second vertex equation to the statement Z3=0 through the application of a
Ward identity. The proof of equivalence is confined to S-wave bound states in the lowest order of self-

consistency.

I. INTRODUCTION

E have recently been confronted with three alter-
native approaches to the problem of the self-
consistent bound state of strongly interacting particles.
These are the techniques of the “bootstrap,”* which is a
method of calculation embedded in the N/D formalism,?
the method of vanishing renormalization constants® [It
is interesting to note that much attention has of late
been focused on the vanishing of only the wave-function
renormalization constant (Z3) of the composite.*~"], and
the vertex-equation approach to the self-consistent
bound state due to Liu.®®

In all of these methods one determines both coupling
constant and mass of the (assumed) composite through
the solution of as many simultaneous eigenvalue equa-
tions relating these parameters. Were these approaches
to yield inequivalent eigenvalue conditions, one might
then expect these bound-state parameters to be over-
determined, a situation which would cause us to ques-
tion seriously our understanding of the bound-state
problem in strong-coupling physics.

The purpose of this article is to present a proof of the
equivalence of these approaches under the restriction
to “unsubtracted bootstraps.” A detailed account of
such a bootstrap as well as its connection with Z;=0
may be found in Sec. II. In Sec. III we develop a
variant of Liu’s procedure in the self-consistent bound-
state problem and complete our equivalence proof.
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Throughout, our discussion is confined to S-wave bound
states in the lowest order of self-consistency.

II. THE UNSUBTRACTED BOOTSTRAP

Let us consider, as in Ref. 8, a composite-particle
model with only three kinds of strongly interacting
scalar particles: a stable composite labeled C, of mass M,
and its two constituents 4 and B with masses M, and
M, respectively. We shall also assume that the com-
posite C is charged, with this charge resulting from the
interaction of its charged constituent B with the electro-
magnetic field. Particle 4 is taken to be neutral. Now,
let M(s) denote the relativistic S-wave elastic scattering
amplitude for 4B particles. We suppose M (s) satisfies
dispersion relations and the elastic unitarity condition®

ImM (s)=M*(s)[q(s)/8msVZ]M (s) (2.1)
for
Sav=(M.+M4)?<s,

where s is the square of the total center-of-mass energy
and g(s) = {[s— (Mo+Mo)*"J[s— (Mo— M)*]/4s} 12, the
center-of-mass momentum. Following Chew and
Mandelstam,? one writes

Bm)*M (s)=N(s)D7(s), (2.2)

where!!

1 [M(s")ID(s")ds’
N(s)= 2.3
© 1677%/7 (s'—s) 239
and
1 r=q(s"N(s")ds’'

D(S)—l—;/;abm. (24)

D(s) has only the right-hand cut in s coming from
unitarity and has a zero corresponding to the “direct”
graph of Fig. 1(a) [which gives rise to a pole in M (s)
at s= M., while N(s) has only the left-hand cut in s
due in lowest order to the “exchange’” graph of Fig. 1(b)

10 Our considerations are limited to the one-channel problem in
this note.

11 ['M (s)] is the discontinuity of M (s) in crossing the unphysical
cut vy.
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Fic. 1. (a) “Direct” graph
in AB scattering with a pole
at s=M2; this is the output
graph in a ‘“bootstrap” calcu-
lation. (b) “Exchange” graph A B
in AB scattering with a pole in
the crossed channel at uw=Mg2; ta)
this is the input.

(b)

(the Born term with a pole in the crossed channel at
u=M2).

It is essential to our discussion to assume a %o-sub-
traction representation for D, although it is customary!2
to make at least one, so that D(s) takes the usual form
* g(sN(s)ds’
ran V(5 = 5)(5' = 50)
with the subtraction constant D(s) eliminated through
the scale transformations

B(s)=D(s)/Dlso),
N(s)=N(s)/D(so).

D(s)= 1——£(s—so) (2.5)

(2.6)

STRONGLY INTERACTING PARTICLES
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From the form of our equation for D [Eq. (2.4)7, it is
apparent that we assume D(s) tends asymptotically to a
constant; hence, by choosing D(o)=1, we insure that
M ((s) goes asymptotically like N(s).1

If a solution M (s) to the coupled integral equations
(2.3) and (2.4) exists, it will have a simple pole at s=M ;2
corresponding to the stable composite C; then, the
requirement that such a pole in M(s) correspond to a
zero in the D function, will yield the two equations of
self-consistency which together determine both the
position and residue associated with the composite C:

1 r° q(s")N(s")ds'
D(M62)=O=1——/ —, (2.72)
TS say SV —M 2)
and!4
1 1 dD(M.?)
T SeN(M2) M2
1 © q(s")N(s")ds’
(2.7b)

SN (M) Sy s — M)

Equations (2.7a) and (2.7b) epitomize the ‘“unsub-
tracted bootstrap”! in our one-channel model. We note
that the second of these equations [Eq. (2.7b)] is un-
affected by the presence or absence of a subtraction in D.

In the lowest order of self-consistency, the bootstrap
equations (2.7a) and (2.7b) take the form

, (2.8a)

32
and
. Ty e ds'q(s")

82 J oy "2 — M 22

In:

To? [ ds' In[(M2—2M 2—2M y+5")/ (M 2—2M 2— 2M 245" — 4¢*(s") ]
/sab q(s")s"V2(s'— M *)

MM 24+ M) — (M= M)

1*02{1145-114,,2 M., 1 1
sl ome M,

-1
2 2M 2 [MAQM 2 2M 2 — M 2)— (M 22— M )22

MP4+MlP—M?

X l:tan—1
[MCZ(ZMQ2+ 2M b2___ Mc2) —_— (MGZ_ Mb2) 2]1/2

+tan™t

MA+MiP—M?

]} , (2.8b)
[Mc2(2Ma2+2Mb2—MCZ)— (Maz__sz)z]l/z

where we have substituted for N(s) in Eq. (2.7a), the Born contribution to it from the crossed channel,'®

12 The purpose of this subtraction is to fix D approximately equal
to unity in the left-hand cut of interest so that the coupling con-
stant used to calculate the force due to C exchange be the same
as that determining the residue of the bound state. Since one usually
imposes an additional cutoff on the D integral, the precise role
played by such a subtraction is unclear. We do not consider this
point any further in this paper except to note that the kinematical
structure of our model allows the no-subtraction form for D given
in Eq. (2.4).

1 1 T'y?
V()= — / d(cos?) . (29
—1

T MZ2—u

13 Thus, at least asymptotically, Nsor(s) is given by the S-wave

projection of the “exchange” graph of Fig. 1(b), with Npern(s) —
(T'¢?/8xs) In(s/const) as s — .
14 Cf. Eq. (5) in M. Nauenberg, Phys. Rev. 124, 2011 (1961).
16 =2 M 2+ 2M32—s+2¢%(s) (1 —cosd).
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while we have replaced N(s) in the integrand in Eq.
(2.7b) by its value at s=M 2

It is worthwhile noting that in the absence of crossing
symmetry, we are left with only the second of the boot-
strap equations,® Eq. (2.8b), so that Zachariasen’s's
world obtains, and we have merely a relation between
the mass and residue of the bound state. That relation
is easily identified with the statement Z;=0,%% where
Z3 is the wave-function renormalization constant of the
composite C. This follows from the fact that

9Z(s)
Zy= 14— ,

9s =ne

(2.10)

where Z(s), the self-energy, is familiarly given by!?

dk
E(s)=i1‘o2/ — M 2tie)t
(2m)*

X[(k—p)—M*+ie) ], (2.11)
and has the once-subtracted representation
Z(s)—Z(M )

T2 * ds'q(s")
YO ¥ . (2.12)
8w sap SV — M 2)(s'—s—1ie€)

We note that this identification is consistent with the
conjecture that the limit of vanishing wave-function
renormalization of an “elementary particle” theory

yields a theory in which the particle may be regarded as

composite.*~7 One would then like to equate the “residue
equation” (2.7b) to the statement Z;=0 to all orders
in the square of the renormalized coupling, I'2.18

III. VERTEX-EQUATION APPROACH TO THE
SELF-CONSISTENT BOUND STATE

The vertex-equation approach to the self-consistent
bound-state problem taken by Liu® follows from the
possibility of unsubtracted dispersion relations for both
strong and electromagnetic vertex functions and from

1_‘; F. Zachariasen, Phys. Rev. 121, 1851 (1961).

17 p=s.

18 Kn analogous “residue equation” was derived some time ago
in a discussion of the bound-state problem (for S waves) in poten-
tial theory given by R. Blankenbecler, M. L. Goldberger, N. N.
Khuri, and S. B. Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).
In their notation (s—kz) one has

1 ,5"112¢[p(s")=p(=s0)]
r .[ s
where T is the residue and —s,, the position of the bound state.
The factorization of the D function, D(s) = (s+s0)D-(s), enables
us to write |D,(s)|2=expp(s). Since the nonrelativistic vertex
T'(s) must have the phase of D,;71(s) on the right-hand cut, so that
T'(s) =D:(—s0)T (—s0)/D-(s), the residue equation may also be
written as a normalization condition on the bound-state vertex,
1 1=, s"2|r(s) |2
1=2 il LA
ke ﬁ ds (s"+s50)?
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the observation that the renormalized ABC coupling is
conventionally defined by?

I‘(S1,52,53)=F0. (3.1)

lim
s1>Mo2, 9> Mp2, 53> M2
These two conditions then lead naturally to the con-
struction of the eigenvalue equations relating I'o? to M 2.

More explicitly, if one considers the vertex function
defined by?®

I'(s)=(44°B°)"*(0] jo(0) | AB in), (3.2)

with? s=(44B)% one finds, on contracting the 4
particle in the instate in the usual way,?!

a3A'd3B’
ImI'(s)= wf ———T(s")(84"°B'°BY)12
44°B’°(27)3
X(4'B'| j(0)| BYS(A'+B'—A—B), (3.3)
with??
1 o  ImI(s)
I‘(s)=—/ ds’'——. (3.4)
T) oy 8 —S—ie
In lowest order one has
(847°B"°B°)"*(A'B'| j.(0)| B)
T2 T'y?
(3.5)

= + ,
M2—s MZ2—u

where u= (4 — B’)2. If one omits the term T'y2/(M 2—s)
in Eq. (3.5) and, in the resulting homogeneous integral
equation for T'(s),

T2~ ds’q(s")T(s")
ro=—" [
1672 J 50,

s'V2(s"—s—1€)

1 1
/ d(cosd’ )* R
—1 02 — M/

replaces T'(s’) by Ty and, further, takes the limit
s— M2 then the eigenvalue equation,

(3.6)

$112(s'— M .2)

1 12 ds'q(s")Npoen(s’)
/ , (3.7)
Sab

™

already familiar as the first bootstrap equation
[Eq. (2.72)], emerges. [If the renormalization term
T2/(M 2—s) has been kept, one would have obtained

19 We note that with our choice of vertex function (3.2), we re-
cover the same vertex function I'(s) in its absorptlve part; more-
over, 7.(0) projects out only that part of |4B in > with angular
momentum J, where J is the angular momentum of the composite.
(For angular momenta J >1, we are led naturally to a Regge-type
treatment of the exchange of the composite.)

2 We use the metric a-b=a¢bo—a*b.

21 ¢f — ( A+ B’ 2,

27 (s) is analytic in the upper-half s plane.
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¥16. 2. Diagrammatic representation of the strong vertex equa-
tion [Eq. (2.8a)]. The dotted line indicates the two-particle
intermediate state appropriate to the dispersion integral for the
graph.

instead of Eq. (3.6),

(1050, 0]

I'y? ds’q(s")T'(s") 1
= / ———— [ d(cos®¥)- ;
162 ) s'V2(s"'—s—1i€) M2—u

3.8)

however, on recognizing the character of the higher
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t N

Fi1c. 3. Diagrammatic representation of the electromagnetic
vertex equation [Eq. (3.20)]. The figure is labeled to conform
with the text.

It is interesting to point out here that the unsub-
tracted bootstrap equation (3.7) may also be identified
with the vanishing of the strong vertex renormalization,
Z,=0. To see this, one first remarks that to order T'¢?,
the sum of irreducible vertex parts L® may be be
written?®:27

LO=14Ly(Ty), (3.10)

orders of perturbation theory,? whence it is apparent re;ziéiéalgii)afra;?matgg ¢
that Eq. (3.8) is the lowest order of?4 “bootstrap”  equation _
(2.8Db). ItZis 81'50 1the -
3 ! ol ¢! statement Z3=0 in low-
Ez To / ds Q(‘Y) /d(cosz}’)—l—, (3‘9) est order. ? A B
Zs 16w2Z5) s'V2(s'—s—ie) M2—u
we are led rather to (3.7).25] where28
d‘k 1
Lrg=iry [ : (3.11)
(2m)4 (B2— M 2+ie)[ (k+ ps)*— M 2+ie ][ (k— pa)i— M 2+ ie]
1 I(p/?)dp.”
= ————P— , (3.12)
2ri ) pSP—M 2—ie
with?9.30
112
I(p/)=— 2y /d“k S(R2—M 2 (k— p)— M2 (k— pu)i— M 2+ie]0[p*— (M+Mp)*].  (3.13)
m
After some straightforward manipulation, one has?
Ty [ In{s’(s'— 2M 22— 2M 24+ M 2) /[ M 25" — (M ,2— M ?)*]}
Ly(To)= / ds’ - (3.14)
1672 J (argrar® (s’—Mﬁ){[S'- (Ma+Mb)2j[s,_ (Ma*Mb)fJ}m
so that to the same order in I'g?, the statement
Z,=1—Ly(T)=0 (3.15)

% See, for example, S. D. Drell and F. Zachariasen, Phys. Rev. 119, 463 (1960).
% We assume, as in R. D. Amado, Phys. Rev. 127, 261 (1962), T'y to be initially slightly less than the bound-state value, so that Z;

is small but finite.

2 Thus, the considerations of Ref. 9, where this renormalization term was kept, are not compatible with our interpretation of this
procedure as a bootstrap. [See also R. Blankenbecler and L. F. Cook, Ptys. Rev. 119, 1745 (1960).]

26 J. Hamilton, The Theory of Elementary Particles (Clarendon Press, Oxford, 1959), Chap. 5, Secs. 11 and 12.

2 S. S. Schweber, A Introduction to Relativsitic Quantum Field Theory (Row, Peterson and Comapny, Evanston, Illinois, 1961),

Chap. 16.
2 po=patps, With pe2=M? and p2=M2
# R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
% K. Nishijima, Phys. Rev. 126, 852 (1962).

sl = p2,
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is nothing else but Eq. (3.7). We have exhibited this bootstrap equation graphically in Fig. 2.

Liu’s second independent vertex equation?® relating strong-coupling constant and bound-state mass is derived
from an (assumed) unsubtracted dispersion relation for the electromagnetic vertex of the composite. We remark
that if this relation is nof identical with the statement Z;=0 and hence with the second bootstrap equation (2.7b),
then we should find ourselves confronted with #4ree independent relations in the two variables, T'y? and M 2. As
we show below by means of a Ward identity,®? this is happily »ot the case; Liu’s second relation is, indeed, to be
identified with Z;=0.

One first notes that

d*k 1 1 1
| . G19)
(2m)t (2~ M 2+ie) | [(k—p)— Mytic] [(k—po)—My+ic]
— @ (p=p0)- (4 20— 28)
’ (2wt (B2— M 2 +ie)[(k— p)2— M > +ie J[ (B— po)2— M2 +ic] ’
=—(p— )V (p,p0), (3.17)
where po?=M 2. Of course, with regard to dispersion relations, the quantity of interest here® is F(p— po)?, with
Vi®(p,p0)= (p+p0)ul P (), (3.18)
so that to second order in I'2,
3Z@(s)
Zy= 1+( ) (3.19)
0s  /(e=m?
=1—[F®#)]@=0=0. (3.20)

We remark that the extremely complicated expression for F®(0) displayed in Ref. 8 follows from considering
the process C+4-C' — v and evaluating the dispersion integral for the appropriate triangle diagram at the value of the
photon invariant #2=0. However, we have some latitude here with regard to the choice of dispersion variable and
might, for example, have used the process C++v — C to generate the second eigenvalue equation [we have schema-
tized the resulting eigenvalue equation in Fig. 37; in this case,®* — (p—$0).V.? (p,po) yields the discontinuity?®

dth [p2—M 2—2k(p—po)]
G p=ine | S BE e g MM, 20

s / d'kdyg  [p*—M 2—2k-1]
(2m)* [(k—po)*—Mo*+ie]

8(R2—M2)0(¢*— M) o(pot+i—k—q), (3.22)

corresponding to the channel C & A+ B, which, after some further manipulation, may be written as

iT2
[ (= poWV 1= = (L= (=M = Ot ), (3.23)
T
so that
o= [='—20)uVu® (P, 00)]
—(P—_PO)I‘VM@)(P??O):—:/ dp" P b .17 P ) (3.24)
271 J sup p2—pi—ie
Tg2 = ds'{[s'— (Ma— M) s’ — (Mot M5)2T} 12
_ 0/ s'{0s"—( )20 — (M o+ M)2]} ' (3.25)
1672 J o s'(s"—s—1€)

# Equation (5.8) of Ref. 8. The expression for a¢ should read a= (1/M2)[4M 2M 32— (Ms2— M2+ M )]
3 See Sec. 16e of Ref. 27.
3 Of course, there is no anomalous threshold (Ref, 8) in this case.
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Thus, one finds
AZ® (M 2)
F@)=———o (3.20)
oM 2

as expected. Figure 4 exhibits the characteristic structure of the equation Z;=0 in lowest order (for which crossing
symmetry is unnecessary). It seems possible to conclude that insofar as the second bootstrap equation [Egs. (2.7b)
and (2.8b)] is established, a no-subtraction dispersion relation treatment of the electromagnetic vertex of the
composite is implied.
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